منابع مشابه
Regularized discriminative clustering
A generative distributional clustering model for continuous data is reviewed and methods for optimizing and regularizing it are introduced and compared. Based on pairs of auxiliary and primary data, the primary data space is partitioned into Voronoi regions that are maximally homogeneous in terms of auxiliary data. Then only variation in the primary data associated with variation in the auxilia...
متن کاملDiscriminative Deep Random Walk for Network Classification
Deep Random Walk (DeepWalk) can learn a latent space representation for describing the topological structure of a network. However, for relational network classification, DeepWalk can be suboptimal as it lacks a mechanism to optimize the objective of the target task. In this paper, we present Discriminative Deep Random Walk (DDRW), a novel method for relational network classification. By solvin...
متن کاملManifold Regularized Discriminative Neural Networks
Unregularized deep neural networks (DNNs) can be easily overfit with a limited sample size. We argue that this is mostly due to the disriminative nature of DNNs which directly model the conditional probability (or score) of labels given the input. The ignorance of input distribution makes DNNs difficult to generalize to unseen data. Recent advances in regularization techniques, such as pretrain...
متن کاملShakeout: A New Regularized Deep Neural Network Training Scheme
Recent years have witnessed the success of deep neural networks in dealing with a plenty of practical problems. The invention of effective training techniques largely contributes to this success. The so-called "Dropout" training scheme is one of the most powerful tool to reduce over-fitting. From the statistic point of view, Dropout works by implicitly imposing an L2 regularizer on the weights....
متن کاملRegularized sequence-level deep neural network model adaptation
We propose a regularized sequence-level (SEQ) deep neural network (DNN) model adaptation methodology as an extension of the previous KL-divergence regularized cross-entropy (CE) adaptation [1]. In this approach, the negative KL-divergence between the baseline and the adapted model is added to the maximum mutual information (MMI) as regularization in the sequence-level adaptation. We compared ei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SN Computer Science
سال: 2021
ISSN: 2662-995X,2661-8907
DOI: 10.1007/s42979-021-00647-z